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Abstract—Transfer entropy is an information measure that
quantifies information flow between processes evolving in time.
Transfer entropy has a plethora of potential applications in finan-
cial markets, canonical systems, neuroscience, and social media.
We offer a fast open source Python implementation called PyIF
that estimates Transfer Entropy with Kraskov’s method. PyIF
utilizes KD-Trees, multiple processes by parallelizing queries on
said KD-Trees, and can be used with CUDA compatible GPUs to
significantly reduce the wall time for estimating transfer entropy.
We find from our analyses that PyIF’s GPU implementation is up
to 1072 times faster (and it’s CPU implementation is up 181 times
faster) than existing implementations to estimate transfer entropy
on large data and scales better than existing implementations.

Index Terms—Transfer Entropy, Parallel Processing

I. INTRODUCTION

Information theory provides a framework for studying the
quantification, storage, and communication of information [1].
This theory defines entropy as the amount of uncertainty or
disorder in a random process. Mutual Information is another
measure in this theory which quantifies the amount of informa-
tion shared across random variables. While similar to mutual
information, transfer entropy (TE) also considers the dynamics
of information and how these dynamics evolves in time [2].
Put simply, TE quantifies the reduction in uncertainty in one
random process from knowing past realizations of another
random process. This is a particularly useful property of TE
as many real-world phenomena, from stock market prices to
neural signals, are dynamic processes evolving in time. TE is
also an asymmetric measure of information transfer. Ergo, TE
computed from process A to process B may yield a different
result than TE computed from B to A. The information
theoretic framework and these measures have led to a variety
of applications in different research areas [1], [5].

A. Applications of Transfer Entropy

TE is particularly useful for detecting information transfer
in financial markets [5]. Marschinski and Kantz used TE to
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perform index-to-index analysis with the Dow Jones Share
Market (DJIA) and the Frankfurt Stock index (DAX) [4] and
document the extent to which one index drives the behavior of
the other. Following Marschinski and Kantz, other researchers
apply TE to examine related research questions about financial
markets. These include measuring TE from market indexes,
such as S&P 500 or the DJIA, to individual equities as well
as between individual equities [5].

Network Inference is another application area of TE. An
objective of network inference is to infer a network by inden-
tifying relationships between individual processes in the data.
Computational neuroscience, financial market analysis, gene
regulatory networks, social media, and multi-agent systems
are areas where TE has been used to model networks. Early
approaches that used TE for network inference either measure
pairwise TE between all pairs of variables in a network or
threshold the TE values to select connections between nodes
in a network [12], [13], and [14]. Recent approaches have
used statistical significance tests of pairwise TE to determine
whether links exist [15] and [16]. [5] offers more examples of
TE applications.

B. Outline

In the next section we formally define TE. The following
section discusses TE estimation methods. We then discuss our
proposed implementation called PyIF to estimate bivariate TE.
Next, we describe a comparative analysis between PyIF and
existing implementations that estimate bivariate TE. Lastly, we
conclude the paper with a discussion and future work.

II. DEFINITION OF TRANSFER ENTROPY

In 2000, Schreiber [2] discovered TE and coined the name
“transfer entropy,” although Milian Palus [3] also indepen-
dently discovered the concept as well. Let the function I
represent mutual information between two probability distri-
butions. Lagged mutual information I(Xt : Yt−k) can be used
as a time-asymmetric measure of information transfer from



Y to X where X and Y are both random processes, k is a
lag period, and t is the current time period. However, lagged
mutual information is unsatisfactory as it does not account for
a shared history between the processes X and Y [6].

TE considers the shared history between two processes via
conditional mutual information. Specifically, TE conditions on
the past of Xt to remove any redundant or shared information
between Xt and its past. This also removes any information
in the process Y about X at time t that is in the past of X [7].
Transfer entropy T (where the transfer of information occurs
from Y to X) can be defined as:

TY→X(t) ≡ I(Xt : Yt−k|Xt−k) (1)

Kraskov [8] shows that transfer entropy can be expressed as
the difference between two conditional mutual information
computations:

TY→X(t) = I(Xt|Xt−k, Yt−k)− I(Xt|Xt−k) (2)

.
The intuition of this definition is that TE measures the

amount of information in Yt−k about Xt after considering the
information in Xt−k about Xt. Put differently, TE quantifies
the reduction in uncertainty about Xt from knowing Yt−k
after considering the reduction in uncertainty about Xt from
knowing Xt−k.

III. ESTIMATING TRANSFER ENTROPY

There are many techniques for estimating mutual informa-
tion. Khan et al. explored the utility of different methods for
mutual information estimation [10] and many of the methods
they considered are applicable to estimate TE.

A. Kernel Density Estimator

Kernel Density Estimators can be used to estimate TE [11].
For a bivariate dataset of size n with variables X and Y, Mutual
Information can be estimated as:

Î(X,Y ) =
1

n

n∑
i=1

ln
p̂XY (xi, yj)

p̂X(xi)p̂Y (yi)
(3)

where p̂X(xi) and p̂Y (yi) are the estimated marginal prob-
ability density functions and p̂XY (xi, yj) is the joint esti-
mated probability density function. For a multivariate dataset
containing: x1, x2, ..., xn where each x is in a d-dimensional
space, the multivariate kernel density estimator with kernel K
is defined by:

p̂(x) =
1

nhd

∑
i

= 1nK(
x− xi
h

) (4)

where h is the smoothing parameter, and in this case, K is
a standard multivariate normal kernel defined by K(x) =

(2π)−d/2e
xT x

2 . Moon et al. outlined a procedure to estimate
Mutual Information using marginal and joint probabilities with
Kernel Density Estimators [11].

B. Kraskov Estimator

Transfer Entropy can be estimated using k-nearest neighbors
[8]. Note that entropy can be estimated with:

Ĥ(X) = − 1

n

n∑
i=1

lnp̂(xi) (5)

Kraskov et al. expanded this definition to estimate entropy to:

Ĥ(X) = − 1

n

n∑
i=1

ψ(nx(i))− 1

k
+ ψ(n) + ln(cdx) +

dx
n

n∑
i=1

ln(ε(i)) (6)

where n are the number of data points, k are the nearest
neighbors, dx is the dimension of x, and cdx is the volume of
the dx-dimensional unit ball. For two random variables X and
Y, let ε(i)2 be the distance between (xi, yi) and it’s kth neighbor
be denoted by (kxi, kyi). Let εx(i)

2 and εy(i)
2 be defined as

||xi−kxi|| and ||yi−yi|| respectively. nx(i) is the number of
points xj such that ||xi−xj || ≤ εx(i)/2, ψ(x) is the digamma
function where

ψ(x) = Γ(x)−1dΓ(x)/dx (7)

and Γ(x) is the ordinary gamma function. Lastly ψ(1) = −C
where C = 0.5772156649 and is the Euler-Mascheroni con-
stant. To estimate the entropy for the random variable Y, Y
can be substituted into Ĥ(X).

Joint entropy between X and Y can then be estimated as:

Ĥ(X,Y ) = −ψ(k)− 1

k
+ ψ(n) + ln(cdxcdy ) +

dx + dy
n

n∑
i

ln(ε(i) (8)

where dy is the dimension of y, and cdy is the column of the
dy-dimensional unit ball. Using Ĥ(X), Ĥ(Y ), and ˆH(X,Y )
mutual information can be estimated as:

Î(X,Y ) = ψ(k)− 1

k
− 1

n

n∑
i=1

[ψ(nx(i)) + ψ(ny(i))] + ψ(n)

(9)
where ny(i) is the number of points yj such that ||yi −
yj || ≤ εy(i)

2 . This method has been referred to as the Kraskov
estimator in literature.

C. Additional Estimators

Khan et al. also explored the utility of Edgeworth approxi-
mation of differential entropy to calculate Mutual Information
and adaptive partitioning of the XY plane to estimate the joint
probability density, which can be used to estimate mutual
information. Ultimately Khan et al. found that a KDE esti-
mator and Kraskov estimator outperform other methods with
respect to their ability to capture the dependence structure of



random processes. Currently our software supports estimating
bivariate TE using the Kraskov estimator with plans to add
other estimators in the future.

IV. PYIF

Our proposed software implementation PyIF 1 is an open
source implementation. PyIF currently only supports using
the Kraskov estimator to estimate TE. PyIF utilizes recent
advancements in hardware to parallelize & optimize operations
across CPUs and Cuda compatible GPUs [9] and CPUs.
In particular we focus our efforts on the parallelization &
optimization across operations to obtain nx & ny in Eq. 9
faster.

PyIF is a python only implementation which utilizes 5 well-
known and actively supported python libraries: SciPy [17],
NumPy [18], scikit-learn [19], nose [20], and numba [21].
SciPy is an open source Python library used for a variety of
STEM applications. NumPy is a part of SciPy’s ecosystem and
is an open source package that provides convenient ways to
perform matrix manipulations and useful linear algebra capa-
bilities. The library scikit-learn is a popular open source library
for machine learning and nose is another open source library
that is useful for testing code to ensure that it will produce the
correct outcome. Lastly, numba is a python compiler that can
compile Python code for execution on multicore CPUs and
CUDA-capable GPUs.

PyIF’s interface only requires you to supply X and Y ,
two numpy arrays with Nx1 dimensions. Optional arguments
can be passed in such as k which controls the number of
neighbors used in KD-tree queries, embedding which controls
how many lagged periods are used to estimate transfer entropy
and a boolean argument GPU can be used to specify if you
want to use a CUDA compatible GPU. Lastly another boolean
argument safetyCheck can be used to check for duplicates
rows in your dataset. This boolean argument is there to help
prevent a more subtle error that can occur when multiple data
points in a bivariate dataset have identical coordinates. This
essentially can lead to several points that have an identical
distance to a query point which violates assumptions of the
Kraskov estimator. A solution that is used in practice and that
we recommend is to add a small amount of noise to your
dataset to avoid this error.

V. COMPARATIVE ANALYSIS

We compare PyIF’s ability to estimate Transfer Entropy
against existing implementations with respect to computational
performance. We present all of the data and code used to
estimate TE for all implementations 2. Each implementation
in this comparative analysis estimates TE on four simulated
bivariate datasets of different sizes. The estimated TE values
are roughly the same for each implementation and we forgo
comparing the actual values since this is random simulated

1PyIF can freely be downloaded from: https://github.com/lcdm-uiuc/PyIF
2The data and code can freely be downloaded from:
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data. We make the assumption that there is relatively little
to no information transfer between the random processes. We
run each of the implementations (excluding Transfer Entropy
Toolbox) on nano, a cluster of eight SuperMicro servers with
Intel Haswell/Broadwell CPUs and NVIDIA Tesla P100/V100
GPUs hosted by the National Center of Super Computing Ap-
plications at the University of Illinois at Urbana-Champaign.
We used one node which contains two E5-2620 v3 Intel Xeon
CPU’s and 2 NVIDIA P100 GPUs with 3584 cores. We refer
to this analysis as Analysis 1.

We conduct the same analysis on different hardware to com-
pare PyIF to Transfer Entropy toolbox because of MATLAB
licensing issues with the National Center of Super Computing
Applications. We use an Engineering Workstation with an Intel
Xeon Processor E5-2680 v4 hosted by Engineering IT shared
services at the University of Illinois at Urbana-Champaign. We
use a single CPU core and up to 16GB of RAM to estimate
TE with Transfer Entropy toolbox and PyIF. This workstation
does not offer CUDA compatiable GPUs to use for either PyIF
or Transfer Entropy Toolbox so we forgo comparing the GPU
implementations. This workstation has a CPU time limit of
60 minutes meaning that if any process uses 100% of a CPU
core for more than 60 minutes the process is terminated. We
refer to this analysis as Analysis 2.

A. IDTxl

The first implementation is the Information Dynamics
Toolkit xl (IDTxl). IDTxl is an open source Python tool-
box for network inference [22]. Currently IDTxl relies on
NumPy, SciPy, CFFI (which is another open source library
that provides a C interface for Python code), H5py which is
a Python package that is used to interface with HDF5 binary
data format, JPype which is a Python module that provides
a Java interface for Python code, and Java jdk which is a
developer kit to develop Java applications and applets. IDTxl
has additional functionaility besides estimating TE however
we only use IDTxl’s capability to estimate TE on a bivariate
dataset.

B. TransEnt

TransEnt is a R package that estimates transfer entropy [23].
Currently TransEnt relies on Rcpp which acts as a interface
to C++ from R. TransEnt also relies on a C++ library called
Appromixate Nearest Neigbors (ANN) [24] which performs
exact and approximate nearest neighbor searches. Currently
the package has been removed from CRAN, however this
software can be used and installed from [23]’s github repo
3.

C. RTransferEntropy

RTransferEntropy is a R package that estimates transfer
entropy between two time series [25]. Currently the RTransfer-
Entropy package relies on Rcpp, and the future package which
supports performing computations in parallel to decrease the
wall time. We include both the parallel implementation of

3 [23] Github Repo: https://github.com/Healthcast/TransEnt



RTransferEntropy and the default implementation for com-
pleteness in the results.

D. Transfer Entropy Toolbox

Transfer Entropy Toolbox is an open source MATLAB
toolbox for transfer entropy estimation [26]. This code’s de-
pendencies include: the Statistics & Machine Learning toolbox
which provides functions to analyze and model data; the
FieldTrip toolbox which is used for EEG, iEEG, MEG, and
NIRS analysis; the parallel computing toolbox that performs
parallel computations of multicore CPUs and GPUs; the signal
processing toolbox that provides functions to analyze, prepro-
cess, and extract features from sampled signals; the TSTOOL
toolbox which is a toolbox for nonlinear time series analysis.
TSTOOL no longer exists and cannot be download from it’s
official homepage 4. Nevertheless, the developers of Transfer
Entropy toolbox include pre-compiled mex files of TSTOOL
that will work with this implementation. At the time of writing
this paper Transfer Entropy toolbox has not been updated since
the year 2017.

E. Data

We create four bivariate datasets for this comparative analy-
sis. Each dataset contains two time series with randomly gen-
erated values between 0 and 1. The first dataset contains 1000
observations, the second dataset contains 10,000 observations,
the third dataset contains 100,000 observations, and the fourth
dataset contains 1,000,000 observations. We used the seed 23
for the pseudo-random number generator for reproducibility.
We will refer to the first dataset, second dataset, third dataset,
and fourth dataset as the micro dataset, small dataset, medium
dataset, and the large dataset respectively.

VI. RESULTS

We report the results for Analysis 1 in Table I. After
estimating TE using all of the implementations outlined in the
comparative analysis section we found that PyIF scales better
on larger data. Excluding the TransEnt implementation, the
CPU implementation of PyIF (or PyIF (CPU)) takes less time
to estimate TransferEntropy than all other implementations.
The R package TransEnt has a better performance in terms of
speed than PyIF (CPU) for the micro dataset and the small
dataset. However PyIF (CPU) is able to estimate transfer
entropy in less time than all other implementations for the
medium dataset and large dataset. PyIF (GPU) outperforms
PyIF (CPU) for the small, medium and large datasets. Figure
1 visualizes this explanation. We suspect that the optimizations
performed by Numba contribute to PyIF having a larger wall
time than TransEnt on the micro and small datasets.

The results for Analysis 2 are in Table II. Although the
Transfer Entropy Toolbox exceeds the CPU time limit for the
large dataset, the results show that PyIF is able to scale better
than Transfer Entropy Toolbox for the other three datasets.
PyIF’s wall times are less than Transfer Entropy toolbox’s

4http://www.dpi.physik.uni-goettingen.de/tstool/

Fig. 1. This figure shows the natural log time( in seconds) to estimate Transfer
Entropy for each implementation (excluding Transfer Entropy Toolbox) for
each dataset used in this study.

Fig. 2. This figure shows the natural log time( in seconds) to estimate Transfer
Entropy between PyIF and Transfer Entropy Toolbox on an Engineering
Workstation as described in the section Comparative Analysis. Transfer
Entropy Toolbox exceeded the maximum allowable CPU runtime for the Large
Dataset.

wall times excluding the Micro Dataset. Figure 2 visualizes
this explanation.

VII. CONCLUSION

An important issue is addressed regarding Big Data with
respect to estimating bi-variate Transfer Entropy. We introduce
a fast solution to estimate Transfer Entropy with a small
amount of dependencies. On large data our implementation
PyIF is up to 1072 times faster utilizing GPUs and up to 181
times faster utilizing CPUs than existing implementations that
estimate bi-variate TE. PyIF is also open sourced and publicly
available on github for anyone to use. For future work we plan
to improve the existing code base to increase the computational
performance of PyIF even further. In addition to this we plan to
implement additional estimators outlined in the section entitled
”Estimating Transfer Entropy” to estimate bi-variate TE. This
boost in computational performance will enable researchers to
estimate bi-variate TE much faster for a variety of research
applications.
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TABLE I
THE WALL TIME TO ESTIMATE TRANSFER ENTROPY FOR A VARIETY OF
IMPLEMENTATIONS ON THE DIFFERENT DATA SETS DESCRIBED IN THE
SECTION COMPARATIVE ANALYSIS. THE HIGHER THE WALL TIME THE
LONGER IT TOOK FOR THE IMPLEMENTATION TO ESTIMATE TRANSFER
ENTROPY. THE NUMBER IN THE RELATIVE PERFORMANCE INDICATES

HOW MANY TIMES FASTER (OR SLOWER) PYIF (CPU) IS TO A
PARTICULAR IMPLEMENTATION.

Implementation Wall
Time (in
seconds)

Relative
Performance
to PyIF (CPU)

Micro Dataset Results (1000 Obs.)
IDTxl 10.98 4.28
TransEnt 0.656 0.25
RTransferEntropy 12.492 4.87
RTransferEntropy (Parallel) 2.876 1.12
PyIF (CPU) 2.564 1.00
PyIF (GPU) 3.282 1.28

Small Dataset Results (10,000 Obs.)
IDTxl 100.23 31.94
TransEnt 0.968 .308
RTransferEntropy 102.228 32.57
RTransferEntropy (Parallel) 15.703 5.00
PyIF (CPU) 3.138 1.00
PyIF (GPU) 1.98 0.63

Medium Dataset Results (100,000 Obs.)
IDTxl 1070.749 152.89
TransEnt 21.708 3.03
RTransferEntropy 1036.661 152.00
RTransferEntropy (Parallel) 127.281 18.66
PyIF (CPU) 6.82 1.00
PyIF (GPU) 3.996 0.58

Large Dataset Results (1,000,000 Obs.)
IDTxl 43150.129 181.97
TransEnt 1585.942 6.68
RTransferEntropy 10592.77 44.67
RTransferEntropy (Parallel) 1188.636 5.01
PyIF (CPU) 237.122 1.00
PyIF (GPU) 40.231 0.16

TABLE II
THE WALL TIME AND RELATIVE PERFORMANCE TO PYIF (CPU) TO

ESTIMATE TRANSFER ENTROPY BETWEEN PYIF AND TRANSFER
ENTROPY TOOLBOX ON AN ENGINEERING WORKSTATION MACHINE AS

DESCRIBED IN THE SECTION COMPARATIVE ANALYSIS.

Implementation Wall Time (in
seconds)

Relative
Performance
to PyIF (CPU)

Micro Dataset Results (1000 Obs.)
PyIF (CPU) 16.049 1.00
Transfer Entropy Toolbox 2.5012 0.15

Small Dataset Results (10,000 Obs.)
PyIF (CPU) 4.989 1.00
Transfer Entropy Toolbox 21.6880 4.347

Medium Dataset Results (100,000 Obs.)
PyIF (CPU) 20.915 1.00
Transfer Entropy Toolbox 616.8712 29.49

Large Dataset Results (1,00,000 Obs.)
PyIF (CPU) 1455.725 1.00
Transfer Entropy Toolbox > 3600 > 2.47

utilizes resources provided by the Innovative Systems Labora-
tory at the National Center for Supercomputing Applications
at the University of Illinois at Urbana-Champaign. Lastly, we
would like to thank Alice Perng for helpful work in Analysis
2.

REFERENCES

[1] Stone, James V. Information Theory: A Tutorial Introduction. S.l.: Sebtel
Press, 2015. Print.

[2] Schreiber, Thomas. (2000). Measuring Information Transfer. Physical
review letters. 85. 461-4. 10.1103/PhysRevLett.85.461.

[3] Palus, Milan & Komarek, Vladimir & Hrncı́r, Zbynek & Sterbová,
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